Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Commun Biol ; 7(1): 236, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413771

RESUMO

Many archaea encode and express histone proteins to compact their genomes. Archaeal and eukaryotic histones share a near-identical fold that permits DNA wrapping through select histone-DNA contacts to generate chromatin-structures that must be traversed by RNA polymerase (RNAP) to generate transcripts. As archaeal histones can spontaneously assemble with a single histone isoform, single-histone chromatin variants provide an idealized platform to detail the impacts of distinct histone-DNA contacts on transcription efficiencies and to detail the role of the conserved cleavage stimulatory factor, Transcription Factor S (TFS), in assisting RNAP through chromatin landscapes. We demonstrate that substitution of histone residues that modify histone-DNA contacts or the three-dimensional chromatin structure result in radically altered transcription elongation rates and pausing patterns. Chromatin-barriers slow and pause RNAP, providing regulatory potential. The modest impacts of TFS on elongation rates through chromatin landscapes is correlated with TFS-dispensability from the archaeon Thermococcus kodakarensis. Our results detail the importance of distinct chromatin structures for archaeal gene expression and provide a unique perspective on the evolution of, and regulatory strategies imposed by, eukaryotic chromatin.


Assuntos
Histonas , Thermococcus , Histonas/metabolismo , DNA Arqueal/genética , Cromatina/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
2.
Environ Microbiol Rep ; 15(6): 530-544, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496315

RESUMO

Global transcriptional regulators are crucial for supporting rapid adaptive responses in changing environments. In Thermococcales, the TrmB sugar-sensing regulator family is well represented but knowledge of the functional role/s of each of its members is limited. In this study, we examined the link between TrmBL4 and the degree of protein secretion in different sugar environments in the hyperthermophilic Archaeon Thermococcus barophilus. Although the absence of TrmBL4 did not induce any growth defects, proteomics analysis revealed different secretomes depending on the sugar and/or genetic contexts. Notably, 33 secreted proteins present in the supernatant were differentially detected. Some of these proteins are involved in sugar assimilation and transport, such as the protein encoded by TERMP_01455 (cyclomaltodextrin glucanotransferase), whereas others have intracellular functions, such as the protein encoded by TERMP_01556 (pyruvate: ferredoxin oxidoreductase Δsubunit). Then, using reverse transcription quantitative polymerase chain reaction experiments, we observed effective transcription regulation by TrmBL4 of the genes encoding at least two ABC-type transporters according to sugar availability.


Assuntos
Proteínas Arqueais , Thermococcus , Thermococcus/genética , Thermococcus/metabolismo , Secretoma , Carboidratos , Açúcares/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
3.
Appl Biochem Biotechnol ; 194(11): 5537-5555, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35793060

RESUMO

Two iron-containing alcohol dehydrogenases (ADHs) are encoded in the genome of the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba ADH641 and Tba ADH547). In our previous publication, we reported biochemical characteristics and catalytic mechanism of Tba ADH547. Herein, we present evidence that Tba ADH641 possesses two activities for ethanol oxidization and acetaldehyde reduction at high temperature, capable of using NAD(H) and NADP(H) as coenzyme. Biochemical data show that Tba ADH641 possesses optimal reaction temperature, thermostability, divalent ion requirement, and substrate specificity distinct from Tba ADH547 and other iron-containing ADH homologues. However, Tba ADH641 and Tba ADH547 display same optimal reaction pH. Kinetic analyses demonstrate that Tba ADH641 displays higher catalytic efficiency for acetaldehyde reduction than that for ethanol oxidation, which is consistent with Tba ADH547. Mutational data demonstrate that residues D115, K118, E159, D190, and E215 in Tba ADH641, which has not been described to date, are necessary for enzyme activity, thus augmenting our understanding on catalytic mechanism of iron-containing ADH. Overall, our work demonstrates that Tba ADH641 is an iron-containing ADH with novel features, which is distinct from Tba ADH547, thus providing a potential biocatalyst for biotransformation reaction.


Assuntos
Thermococcus , Thermococcus/genética , Thermococcus/metabolismo , Álcool Desidrogenase/química , Ferro , NADP/metabolismo , NAD/metabolismo , Sequência de Aminoácidos , Cinética , Etanol , Acetaldeído
4.
Commun Biol ; 5(1): 539, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35660788

RESUMO

Ferredoxin-dependent metabolic engineering of electron transfer circuits has been developed to enhance redox efficiency in the field of synthetic biology, e.g., for hydrogen production and for reduction of flavoproteins or NAD(P)+. Here, we present the bioconversion of carbon monoxide (CO) gas to formate via a synthetic CO:formate oxidoreductase (CFOR), designed as an enzyme complex for direct electron transfer between non-interacting CO dehydrogenase and formate dehydrogenase using an electron-transferring Fe-S fusion protein. The CFOR-introduced Thermococcus onnurineus mutant strains showed CO-dependent formate production in vivo and in vitro. The maximum formate production rate from purified CFOR complex and specific formate productivity from the bioreactor were 2.2 ± 0.2 µmol/mg/min and 73.1 ± 29.0 mmol/g-cells/h, respectively. The CO-dependent CO2 reduction/formate production activity of synthetic CFOR was confirmed, indicating that direct electron transfer between two unrelated dehydrogenases was feasible via mediation of the FeS-FeS fusion protein.


Assuntos
Monóxido de Carbono , Thermococcus , Monóxido de Carbono/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
5.
Biotechnol Bioeng ; 119(9): 2388-2398, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661137

RESUMO

Prokaryotic Argonaute proteins (pAgos) play an important role in host defense against invading genetic elements. The functional diversities make pAgos very promising in development of novel nucleic acid manipulation tools and attract increasing attentions. Here, we reported the in vitro characterization of an Argonaute protein from archaeon Thermococcus thioreducens (TtrAgo) and its example of application in hepatitis B virus DNA detection. The results showed that TtrAgo functions as a programmable DNA endonuclease by utilizing both short 5'-phosphorylated and 5'-hydroxylated single-stranded DNA guides, and presents high efficiency and accuracy at optimal temperatures ranging from 75°C to 95°C. In addition, TtrAgo also possesses stepwise cleavage activity like PfAgo (Pyrococcus furiosus) and chopping activity toward double-stranded DNA similar to MjAgo (Methanocaldococcus jannaschii). This study increases our understanding of pAgos and expands the Ago-based DNA detection toolbox.


Assuntos
Pyrococcus furiosus , Thermococcus , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , DNA/metabolismo , Methanocaldococcus/genética , Pyrococcus furiosus/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
6.
FEMS Microbiol Lett ; 368(21-24)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35038331

RESUMO

There is increasing interest in gluten-degrading enzymes for use during food and drink processing. The industrially available enzymes usually work best at low to ambient temperatures. However, food manufacturing is often conducted at higher temperatures. Therefore, thermostable gluten-degrading enzymes are of great interest. We have identified a new thermostable gluten-degrading proline-specific prolyl endoprotease from the archaea Thermococcus kodakarensis. We then cloned and expressed it in Escherichia coli. The prolyl endoprotease was found to have a size of 70.1 kDa. The synthetic dipeptide Z-Gly-Pro-p-nitroanilide was used to characterize the prolyl endoprotease and it had maximum activity at pH 7 and 77°C. The Vmax, Km and kcat values of the purified prolyl endoprotease were calculated to be 3.14 mM/s, 1.10 mM and 54 s-1, respectively. When the immunogenic gluten peptides PQPQLPYPQPQLPY (α-gliadin) and SQQQFPQPQQPFPQQP (γ-hordein) were used as substrates, the prolyl endoprotease was able to degrade these. Furthermore, gluten in wort was reduced when the prolyl endoprotease was used during mashing of barley malt. The discoveries open up new food processing possibilities and further the understanding of proline-specific protease diversity.


Assuntos
Glutens , Thermococcus , Gliadina/química , Gliadina/metabolismo , Glutens/química , Glutens/metabolismo , Peptídeos , Prolil Oligopeptidases , Thermococcus/genética , Thermococcus/metabolismo
7.
Nucleic Acids Res ; 50(7): 3601-3615, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34568951

RESUMO

Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.


Assuntos
DNA Helicases , DNA Polimerase Dirigida por DNA , Thermococcus , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Eucariotos/metabolismo , Thermococcus/enzimologia , Thermococcus/metabolismo
8.
Nucleic Acids Res ; 49(21): 12332-12347, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34755863

RESUMO

In all cells, DNA topoisomerases dynamically regulate DNA supercoiling allowing essential DNA processes such as transcription and replication to occur. How this complex system emerged in the course of evolution is poorly understood. Intriguingly, a single horizontal gene transfer event led to the successful establishment of bacterial gyrase in Archaea, but its emergent function remains a mystery. To better understand the challenges associated with the establishment of pervasive negative supercoiling activity, we expressed the gyrase of the bacterium Thermotoga maritima in a naïve archaeon Thermococcus kodakarensis which naturally has positively supercoiled DNA. We found that the gyrase was catalytically active in T. kodakarensis leading to strong negative supercoiling of plasmid DNA which was stably maintained over at least eighty generations. An increased sensitivity of gyrase-expressing T. kodakarensis to ciprofloxacin suggested that gyrase also modulated chromosomal topology. Accordingly, global transcriptome analyses revealed large scale gene expression deregulation and identified a subset of genes responding to the negative supercoiling activity of gyrase. Surprisingly, the artificially introduced dominant negative supercoiling activity did not have a measurable effect on T. kodakarensis growth rate. Our data suggest that gyrase can become established in Thermococcales archaea without critically interfering with DNA transaction processes.


Assuntos
Proteínas de Bactérias/genética , DNA Girase/genética , DNA Arqueal/genética , DNA Super-Helicoidal/genética , Temperatura Alta , Thermococcus/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Biocatálise , Ciprofloxacina/farmacologia , DNA Girase/metabolismo , DNA Arqueal/metabolismo , DNA Super-Helicoidal/metabolismo , Regulação da Expressão Gênica em Archaea/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Microscopia Confocal , Plasmídeos/genética , Plasmídeos/metabolismo , Homologia de Sequência do Ácido Nucleico , Thermococcus/efeitos dos fármacos , Thermococcus/metabolismo , Thermotoga maritima/enzimologia , Thermotoga maritima/genética
9.
Appl Microbiol Biotechnol ; 105(13): 5449-5460, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34223949

RESUMO

Genomes of hyperthermophiles are facing a severe challenge due to increased deamination rates of cytosine induced by high temperature, which could be counteracted by base excision repair mediated by uracil DNA glycosylase (UDG) or other repair pathways. Our previous work has shown that the two UDGs (Tba UDG247 and Tba UDG194) encoded by the genome of the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 can remove uracil from DNA at high temperature. Herein, we provide evidence that Tba UDG247 is a novel bifunctional glycosylase which can excise uracil from DNA and further cleave the phosphodiester bo nd of the generated apurinic/apyrimidinic (AP) site, which has never been described to date. In addition to cleaving uracil-containing DNA, Tba UDG247 can also cleave AP-containing ssDNA although at lower efficiency, thereby suggesting that the enzyme might be involved in repair of AP site in DNA. Kinetic analyses showed that Tba UDG247 displays a faster rate for uracil excision than for AP cleavage, thus suggesting that cleaving AP site by the enzyme is a rate-limiting step for its bifunctionality. Phylogenetic analysis showed that Tba UDG247 is clustered on a separate branch distant from all the reported UDGs. Overall, we designated Tba UDG247 as the prototype of a novel family of bifunctional UDGs. KEY POINTS: We first reported a novel DNA glycosylase with bifunctionality. Tba UDG247 possesses an AP lyase activity.


Assuntos
Thermococcus , Reparo do DNA , Filogenia , Thermococcus/genética , Thermococcus/metabolismo , Uracila , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
10.
Commun Biol ; 4(1): 751, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140623

RESUMO

It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s-1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging.


Assuntos
Ácido Aspártico/metabolismo , Transporte Biológico/fisiologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Sódio/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Proteolipídeos/metabolismo , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
11.
Nucleic Acids Res ; 49(8): 4599-4612, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849056

RESUMO

The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , DNA Primase/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Thermococcus/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/química , Cromatografia em Gel , DNA Helicases/genética , DNA Polimerase III/química , DNA Primase/genética , DNA Primase/metabolismo , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Eletroforese em Gel de Poliacrilamida Nativa , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Proteínas Recombinantes , Ressonância de Plasmônio de Superfície , Thermococcus/genética
12.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33468590

RESUMO

Members of Thermococcales harbor a number of genes encoding putative aminotransferase class III enzymes. Here, we characterized the TK1211 protein from the hyperthermophilic archaeon Thermococcus kodakarensis The TK1211 gene was expressed in T. kodakarensis under the control of the strong, constitutive promoter of the cell surface glycoprotein gene TK0895 (P csg ). The purified protein did not display aminotransferase activity but exhibited racemase activity. An examination of most amino acids indicated that the enzyme was a racemase with relatively high activity toward Leu and Met. Kinetic analysis indicated that Leu was the most preferred substrate. A TK1211 gene disruption strain (ΔTK1211) was constructed and grown on minimal medium supplemented with l- or d-Leu or l- or d-Met. The wild-type T. kodakarensis is not able to synthesize Leu and displays Leu auxotrophy, providing a direct means to examine the Leu racemase activity of the TK1211 protein in vivo When we replaced l-Leu with d-Leu in the medium, the host strain with an intact TK1211 gene displayed an extended lag phase but displayed cell yield similar to that observed in medium with l-Leu. In contrast, the ΔTK1211 strain displayed growth in medium with l-Leu but could not grow with d-Leu. The results indicate that TK1211 encodes a Leu racemase that is active in T. kodakarensis cells and that no other protein exhibits this activity, at least to an extent that can support growth. Growth experiments with l- or d-Met also confirmed the Met racemase activity of the TK1211 protein in T. kodakarensisIMPORTANCE Phylogenetic analysis of aminotransferase class III proteins from all domains of life reveals numerous groups of protein sequences. One of these groups includes a large number of sequences from Thermococcales species and can be divided into four subgroups. Representatives of three of these subgroups have been characterized in detail. This study reveals that a representative from the remaining uncharacterized subgroup is an amino acid racemase with preference toward Leu and Met. Taken together with results of previous studies on enzymes from Pyrococcus horikoshii and Thermococcus kodakarensis, members of the four subgroups now can be presumed to function as a broad-substrate-specificity amino acid racemase (subgroup 1), alanine/serine racemase (subgroup 2), ornithine ω-aminotransferase (subgroup 3), or Leu/Met racemase (subgroup 4).


Assuntos
Isomerases de Aminoácido/metabolismo , Proteínas Arqueais/metabolismo , Thermococcus/enzimologia , Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Temperatura Alta , Cinética , Leucina/metabolismo , Metionina/metabolismo , Filogenia , Especificidade por Substrato , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
13.
J Proteomics ; 232: 104044, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33161166

RESUMO

Thermococcus gammatolerans EJ3 is an extremophile archaeon which was revealed as one of the most radioresistant organisms known on Earth, withstanding up to 30 kGy gamma-ray radiations. While its theoretical proteome is rather small, T. gammatolerans may enhance its toolbox by post-translational modification of its proteins. Here, we explored its extent of Nε-acetylation of lysines. For this, we immunopurified with two acetylated-lysine antibodies the acetylated peptides resulting from a proteolysis of soluble proteins with trypsin. The comparison of acetylated proteomes of two archaea highlights some common acetylation patterns but only 4 out of 26 orthologous proteins found to be acetylated in both species, are acetylated on the same lysine site. We evidenced that histone B is acetylated in T. gammatolerans at least at two different sites (K27 and K36), and a peptide common at the C-terminus of histones A and B is also acetylated. We verified that acetylation of histones is a common trait among Thermococcales after recording data on Thermococcus kodakaraensis histones and identifying three acetylated sites. This discovery reinforces the strong evolutionary link between Archaea and Eukaryotes and should be an incentive for further investigation on the extent and role of acetylation of histones in Archaea. SIGNIFICANCE: Acetylation is an important post-translational modification of proteins that has been extensively described in Eukaryotes, and more recently in Bacteria. Here, we report for the first time ever that histones in Archaea are also modified by acetylation after a systematic survey of acetylated peptides in Thermococcus gammatolerans. Structural models of histones A and B indicates that acetylation of the identified modified residues may play an important role in histone assembly and/or interaction with DNA. The in-depth protein acetylome landscape in T. gammatolerans includes at least 181 unique protein sequences, some of them being modified on numerous residues. Proteins involved in metabolic processes, information storage and processing mechanisms are over-represented categories in this dataset, highlighting the ancient role of this protein post-translational modification in primitive cells.


Assuntos
Proteoma , Thermococcus , Acetilação , Histonas , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Thermococcus/metabolismo
14.
Nat Commun ; 11(1): 5907, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219217

RESUMO

McrBC complexes are motor-driven nucleases functioning in bacterial self-defense by cleaving foreign DNA. The GTP-specific AAA + protein McrB powers translocation along DNA and its hydrolysis activity is stimulated by its partner nuclease McrC. Here, we report cryo-EM structures of Thermococcus gammatolerans McrB and McrBC, and E. coli McrBC. The McrB hexamers, containing the necessary catalytic machinery for basal GTP hydrolysis, are intrinsically asymmetric. This asymmetry directs McrC binding so that it engages a single active site, where it then uses an arginine/lysine-mediated hydrogen-bonding network to reposition the asparagine in the McrB signature motif for optimal catalytic function. While the two McrBC complexes use different DNA-binding domains, these contribute to the same general GTP-recognition mechanism employed by all G proteins. Asymmetry also induces distinct inter-subunit interactions around the ring, suggesting a coordinated and directional GTP-hydrolysis cycle. Our data provide insights into the conserved molecular mechanisms governing McrB family AAA + motors.


Assuntos
Enzimas de Restrição do DNA , GTP Fosfo-Hidrolases/ultraestrutura , Thermococcus , Archaea/metabolismo , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição do DNA/ultraestrutura , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Thermococcus/metabolismo , Thermococcus/ultraestrutura
15.
Nat Commun ; 11(1): 998, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081874

RESUMO

Glutamate transporters are cation-coupled secondary active membrane transporters that clear the neurotransmitter L-glutamate from the synaptic cleft. These transporters are homotrimers, with each protomer functioning independently by an elevator-type mechanism, in which a mobile transport domain alternates between inward- and outward-oriented states. Using single-particle cryo-EM we have determined five structures of the glutamate transporter homologue GltTk, a Na+- L-aspartate symporter, embedded in lipid nanodiscs. Dependent on the substrate concentrations used, the protomers of the trimer adopt a variety of asymmetrical conformations, consistent with the independent movement. Six of the 15 resolved protomers are in a hitherto elusive state of the transport cycle in which the inward-facing transporters are loaded with Na+ ions. These structures explain how substrate-leakage is prevented - a strict requirement for coupled transport. The belt protein of the lipid nanodiscs bends around the inward oriented protomers, suggesting that membrane deformations occur during transport.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Proteínas Arqueais/química , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Ácido Aspártico/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Lipídeos/química , Modelos Moleculares , Nanoestruturas/química , Conformação Proteica , Estrutura Quaternária de Proteína , Pyrococcus horikoshii/metabolismo , Imagem Individual de Molécula , Simportadores/química , Simportadores/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
16.
Nat Microbiol ; 5(4): 545-553, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32094586

RESUMO

Regulated gene expression is largely achieved by controlling the activities of essential, multisubunit RNA polymerase transcription elongation complexes (TECs). The extreme stability required of TECs to processively transcribe large genomic regions necessitates robust mechanisms to terminate transcription. Efficient transcription termination is particularly critical for gene-dense bacterial and archaeal genomes1-3 in which continued transcription would necessarily transcribe immediately adjacent genes and result in conflicts between the transcription and replication apparatuses4-6; the coupling of transcription and translation7,8 would permit the loading of ribosomes onto aberrant transcripts. Only select sequences or transcription termination factors can disrupt the otherwise extremely stable TEC and we demonstrate that one of the last universally conserved archaeal proteins with unknown biological function is the Factor that terminates transcription in Archaea (FttA). FttA resolves the dichotomy of a prokaryotic gene structure (operons and polarity) and eukaryotic molecular homology (general transcription apparatus) that is observed in Archaea. This missing link between prokaryotic and eukaryotic transcription regulation provides the most parsimonious link to the evolution of the processing activities involved in RNA 3'-end formation in Eukarya.


Assuntos
Proteínas Arqueais/química , Fator de Especificidade de Clivagem e Poliadenilação/química , Genoma Arqueal , Thermococcus/genética , Fatores de Transcrição/química , Terminação da Transcrição Genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Evolução Biológica , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Modelos Moleculares , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia Estrutural de Proteína , Thermococcus/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética
17.
EMBO J ; 39(9): e103788, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32064661

RESUMO

Ribosome recycling by the twin-ATPase ABCE1 is a key regulatory process in mRNA translation and surveillance and in ribosome-associated protein quality control in Eukarya and Archaea. Here, we captured the archaeal 30S ribosome post-splitting complex at 2.8 Å resolution by cryo-electron microscopy. The structure reveals the dynamic behavior of structural motifs unique to ABCE1, which ultimately leads to ribosome splitting. More specifically, we provide molecular details on how conformational rearrangements of the iron-sulfur cluster domain and hinge regions of ABCE1 are linked to closure of its nucleotide-binding sites. The combination of mutational and functional analyses uncovers an intricate allosteric network between the ribosome, regulatory domains of ABCE1, and its two structurally and functionally asymmetric ATP-binding sites. Based on these data, we propose a refined model of how signals from the ribosome are integrated into the ATPase cycle of ABCE1 to orchestrate ribosome recycling.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Subunidades Ribossômicas Menores de Arqueas/metabolismo , Thermococcus/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Microscopia Crioeletrônica , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Subunidades Ribossômicas Menores de Arqueas/química , Ribossomos/metabolismo , Thermococcus/genética
18.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32041795

RESUMO

Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensisIMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.


Assuntos
Guanosina/análogos & derivados , Methanosarcina/metabolismo , RNA Arqueal/genética , RNA de Transferência/genética , Thermococcus/metabolismo , Guanosina/metabolismo , Methanosarcina/química , Methanosarcina/genética , Estabilidade de RNA , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Thermococcus/química , Thermococcus/genética
19.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924613

RESUMO

To date, NAD(P)H, ferredoxin, and coenzyme F420 have been identified as electron donors for thioredoxin reductase (TrxR). In this study, we present a novel electron source for TrxR. In the hyperthermophilic archaeon Thermococcus onnurineus NA1, the frhAGB-encoded hydrogenase, a homolog of the F420-reducing hydrogenase of methanogens, was demonstrated to interact with TrxR in coimmunoprecipitation experiments and in vitro pulldown assays. Electrons derived from H2 oxidation by the frhAGB-encoded hydrogenase were transferred to TrxR and reduced Pdo, a redox partner of TrxR. Interaction and electron transfer were observed between TrxR and the heterodimeric hydrogenase complex (FrhAG) as well as the heterotrimeric complex (FrhAGB). Hydrogen-dependent reduction of TrxR was 7-fold less efficient than when NADPH was the electron donor. This study not only presents a different type of electron donor for TrxR but also reveals new functionality of the frhAGB-encoded hydrogenase utilizing a protein as an electron acceptor.IMPORTANCE This study has importance in that TrxR can use H2 as an electron donor with the aid of the frhAGB-encoded hydrogenase as well as NAD(P)H in T. onnurineus NA1. Further studies are needed to explore the physiological significance of this protein. This study also has importance as a significant step toward understanding the functionality of the frhAGB-encoded hydrogenase in a nonmethanogen; the hydrogenase can transfer electrons derived from oxidation of H2 to a protein target by direct contact without the involvement of an electron carrier, which is distinct from the mechanism of its homologs, F420-reducing hydrogenases of methanogens.


Assuntos
Proteínas Arqueais/metabolismo , Elétrons , Hidrogenase/metabolismo , Thermococcus/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Transporte de Elétrons , Oxirredução
20.
J Biosci Bioeng ; 129(1): 6-15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31337538

RESUMO

The genome sequence of Thermococcus kodakarensis contains an open reading frame, TK0376, annotated as ADP-dependent phosphofructokinase belonging to pfkC family. The encoding gene was expressed in Escherichia coli and the gene product was characterized. The recombinant protein was produced in soluble and active form. Phosphofructokinase activity of TK0376 was metal-ion dependent and the highest activity (5090 µmol min-1 mg-1) was found in the presence of Co2+ followed by Mg2+ (3280 µmol min-1 mg-1) at 90°C and pH 7.5. TK0376 preferred ADP as phosphoryl donor, however, it could be replaced by ATP but with a 5-fold lower activity. It catalyzed the phosphorylation of fructose 6-phosphate and dephosphorylation of fructose 1,6-bisphosphate. In addition, it was able to phosphorylate glucose and nucleosides but with a much lower rate compared to that of fructose 6-phosphate. The apparent kcat and Km values against fructose 6-phosphate were 4238 s-1 and 0.74 mM, respectively. The rate of dephosphorylation of fructose 1,6-bisphosphate was 3-times lower at 50°C than the phosphorylation of fructose 6-phosphate. Similarly, the rate of phosphorylation of glucose was 450-fold lower than that of fructose 6-phosphate. Phosphofructokinase activity was not allosterically regulated, but it was slightly enhanced by phosphoenol pyruvate, and inhibited by ATP and AMP in a competitive manner.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Thermococcus/enzimologia , Proteínas Arqueais/genética , Estabilidade Enzimática , Frutosefosfatos/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes/metabolismo , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...